Gem GTPase acts upstream Gmip/RhoA to regulate cortical actin remodeling and spindle positioning during early mitosis.
نویسندگان
چکیده
Gem is a small guanosine triphosphate (GTP)-binding protein within the Ras superfamily, involved in the regulation of voltage-gated calcium channel activity and cytoskeleton reorganization. Gem overexpression leads to stress fiber disruption, actin and cell shape remodeling and neurite elongation in interphase cells. In this study, we show that Gem plays a crucial role in the regulation of cortical actin cytoskeleton that undergoes active remodeling during mitosis. Ectopic expression of Gem leads to cortical actin disruption and spindle mispositioning during metaphase. The regulation of spindle positioning by Gem involves its downstream effector Gmip. Knockdown of Gmip rescued Gem-induced spindle phenotype, although both Gem and Gmip accumulated at the cell cortex. In addition, we implicated RhoA GTPase as an important effector of Gem/Gmip signaling. Inactivation of RhoA by overexpressing dominant-negative mutant prevented normal spindle positioning. Introduction of active RhoA rescued the actin and spindle positioning defects caused by Gem or Gmip overexpression. These findings demonstrate a new role of Gem/Gmip/RhoA signaling in cortical actin regulation during early mitotic stages.
منابع مشابه
Vesicular trafficking through cortical actin during exocytosis is regulated by the Rab27a effector JFC1/Slp1 and the RhoA-GTPase–activating protein Gem-interacting protein
Cytoskeleton remodeling is important for the regulation of vesicular transport associated with exocytosis, but a direct association between granular secretory proteins and actin-remodeling molecules has not been shown, and this mechanism remains obscure. Using a proteomic approach, we identified the RhoA-GTPase-activating protein Gem-interacting protein (GMIP) as a factor that associates with t...
متن کاملAn ECT2–centralspindlin complex regulates the localization and function of RhoA
In anaphase, the spindle dictates the site of contractile ring assembly. Assembly and ingression of the contractile ring involves activation of myosin-II and actin polymerization, which are triggered by the GTPase RhoA. In many cells, the central spindle affects division plane positioning via unknown molecular mechanisms. Here, we dissect furrow formation in human cells and show that the RhoGEF...
متن کاملGem associates with Ezrin and acts via the Rho-GAP protein Gmip to down-regulate the Rho pathway.
Gem is a protein of the Ras superfamily that plays a role in regulating voltage-gated Ca2+ channels and cytoskeletal reorganization. We now report that GTP-bound Gem interacts with the membrane-cytoskeleton linker protein Ezrin in its active state, and that Gem binds to active Ezrin in cells. The coexpression of Gem and Ezrin induces cell elongation accompanied by the disappearance of actin str...
متن کاملTPPP acts downstream of RhoA-ROCK-LIMK2 to regulate astral microtubule organization and spindle orientation.
The actin cytoskeleton in eukaryotic cells undergoes drastic rearrangement during mitosis. The changes to the actin cytoskeleton are most obvious in the adherent cells, where the actin stress fibres are disassembled, and the cortical actin network becomes more prominent with concomitant increase in cell rigidity as cells round up and enter mitosis. Although the regulatory connections between th...
متن کاملA novel Rho GTPase-activating-protein interacts with Gem, a member of the Ras superfamily of GTPases.
Gem is a Ras-related protein whose expression is induced in several cell types upon activation by extracellular stimuli. With the aim of isolating the cellular partners of Gem that mediate its biological activity we performed a yeast two-hybrid screen and identified a novel protein of 970 amino acids, Gmip, that interacts with Gem through its N-terminal half, and presents a cysteine-rich domain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Carcinogenesis
دوره 35 11 شماره
صفحات -
تاریخ انتشار 2014